Словарь научных терминов
Бимолекулярные реакции

БИМОЛЕКУЛЯРНЫЕ РЕАКЦИИ, хим. р-ции, в элементарном акте к-рых превращению подвергаются две частицы (молекулы, радикалы или ионы). В результате могут возникать одна, две или (в редких случаях) три и более частиц продукта:
http://www.medpulse.ru/image/encyclopedia/4/3/1/3431.jpeg

где А и В - молекулы реагентов, С, D и F - молекулы продуктов. Наиб. обширный класс Б.р. - р-ции типа (16). бимолекулярные как в прямом, так и в обратном направлениях. Их кинетика описывается ур-нием:
http://www.medpulse.ru/image/encyclopedia/4/3/2/3432.jpeg

где к и к'-константы скорости р-ции соотв. в прямом и обратном направлениях, [А], [В] и [С], [D] - концентрации реагентов и продуктов.

Реакции в газах. Поскольку в газах время между последовательными столкновениями молекул (10-10 с при нормальных условиях) много больше времени столкновение (10-12 - 10-13 с), влияние среды (окружения) проявляется лишь в соударениях реагирующих молекул с молекулами окружения до или после столкновения реагирующих молекул друг с другом, но не за время одного столкновения. Поэтому элементарный акт р-ции можно рассматривать как результат изолированного парного столкновения. Tакие столкновения могут приводить к изменению числа частиц с энергией, превышающей энергию активации р-ции Е, и нарушению максвелл-больцмановского распределения частиц по энергиям их относит. движения и внутр. степеням свободы. В зависимости от соотношения скоростей р-ции и процессов релаксации, восстанавливающих это распределение, различают равновесные и неравновесные Б. р.

Равновесные р-ции протекают сравнительно медленно, максвелл-больцмановское распределение практически сохраняется, и скорость р-ции w м. б. рассчитана в рамках активированного комплекса теории:
http://www.medpulse.ru/image/encyclopedia/4/3/3/3433.jpeg

где k и h-постоянные Больцмана и Планка соотв., Т - абс. т-ра, F(A), F(BF(http://www.medpulse.ru/image/encyclopedia/4/3/4/3434.jpeg)-статистич. суммы исходных реагентов А и В и активированных комплексовhttp://www.medpulse.ru/image/encyclopedia/4/3/5/3435.jpeg, к-т. наз. макроскопич. константа скорости р-ции. Посколькуhttp://www.medpulse.ru/image/encyclopedia/4/3/6/3436.jpeg рассматривается как обычная молекула, в к-рой одна степень свободы колебат. движения заменена степенью свободы постулат. движения вдоль координаты р-ции, статистич. сумма F(http://www.medpulse.ru/image/encyclopedia/4/3/7/3437.jpeg) вычисляется как статистич. сумма обычной молекулы без одной степени свободы колебат. движения. Для модели столкновения молекул как жестких шаров с массами mA и mB и радиусами rА и rB отношение статистич. сумм в (3) равно газокинетич. числу столкновений:
http://www.medpulse.ru/image/encyclopedia/4/3/8/3438.jpeg

Тогда к(Т)= ZPe-E/kT, где Р-т. наз. стерич. фактор, учитывающий вероятность наиб. благоприятной для р-ции взаимной ориентации сталкивающихся молекул. Теория активированного комплекса позволяет вычислить его величину в предположении, что при образовании активированного комплекса происходит замена вращат. степеней свободы колебательными. Отсюда следует, что для многих р-ций Р - малая величина (меньше единицы), а их скорость намного меньше значения, рассчитанного на основе газокинетич. теории. Следовательно, стерич. фактор действительно отражает динамич. процессы; в частности, он зависит от вероятности образования предпочтительной для р-ции конфигурации активированного комплекса.

Для неравновесных р-ций, скорость к-рых сравнима со скоростями релаксационных процессов, максвелл-больцмановское распределение нарушается сильно и теория активированного комплекса неприменима. Необходимо учитывать распределения частиц не только по энергиям их относит. движения, но и по квантовым состояниям, а также изменение этих распределений. Для этого стехиометрич. ур-ние ()записывают в микроскопич. форме с учетом фиксированных квантовых состоянийhttp://www.medpulse.ru/image/encyclopedia/4/3/9/3439.jpegиhttp://www.medpulse.ru/image/encyclopedia/4/4/0/3440.jpegреагирующих частиц А и В и образующихся из них квантовых состоянийhttp://www.medpulse.ru/image/encyclopedia/4/4/1/3441.jpegиhttp://www.medpulse.ru/image/encyclopedia/4/4/2/3442.jpeg частиц продуктов С и D соотв.:
http://www.medpulse.ru/image/encyclopedia/4/4/3/3443.jpeg

Характеристика такого парного столкновения - т. наз. интегральное сечение р-цииhttp://www.medpulse.ru/image/encyclopedia/4/4/4/3444.jpeg . По физ. смыслу эта величина соответствует площади мишени, центр к-рой совпадает с центром масс одной из реагирующих молекул, если при попадании в эту мишень второй молекулы происходит процесс (4). Произведение скорости относит. движения сталкивающихся частиц на интегральное сечение р-ции равно потоку молекул, к-рые в случае "попадания" в мишень прореагировали или изменили свое квантовое состояние, т.е. равно скорости процесса (4). Теоретич. расчетhttp://www.medpulse.ru/image/encyclopedia/4/4/5/3445.jpeg или его эксперим. определение - осн. задача динамики элементарного акта р-ции.

Скорость процесса (4) выражают через сечение р-ции и ф-цию распределения f(и) частиц по скоростям их относит. движения:
http://www.medpulse.ru/image/encyclopedia/4/4/6/3446.jpeg

Если бимолекулярный процесс (4) не нарушает термически равновесного распределения частиц по "скоростям, описываемого максвелловской ф-цией fo(и, Т), он характеризуется т. наз. микроскопич. константой скорости

http://www.medpulse.ru/image/encyclopedia/4/4/7/3447.jpeg . Если же распределение частиц реагентов остается термически равновесным не только по скоростям их относит. движения, но и по внутр. состояниям и характеризуется больцмановской ф-циейhttp://www.medpulse.ru/image/encyclopedia/4/4/8/3448.jpeg представляет интерес полная концентрация частиц продуктов независимо от их квантового состояния. В этом случае р-ция характеризуется макроскопич. константой скорости, к-рую получают изhttp://www.medpulse.ru/image/encyclopedia/4/4/9/3449.jpeg суммированием по конечным состояниям частиц продуктов и усреднением по начальным состояниям частиц реагентов:
http://www.medpulse.ru/image/encyclopedia/4/5/0/3450.jpeg

Аналогичным образом м. б. определена любая частично усредненная константа скорости, к-рая описывает кинетику р-ции при разл. степени детализации квантовых состояний частиц реагентов и продуктов.

Т. обр., теория Б. р. связывает кинетич. параметр р-ции — константу скорости к (Т)-с сечением р-ции, т.е. с динамич. характеристикой парного столкновения молекул. Приближенное значение к (Т) для равновесных р-ций может быть также рассчитано в рамках теории активированного комплекса, что позволяет избежать промежут. расчета сечения р-ции и микроскопич. констант скорости.

Для очень быстрых процессов, напр. горения, процессов в ударных волнах и плазме, для ряда космохим. р-ций, когда в системе полностью отсутствует термич. распределение частиц, понятия микроскопич. и макроскопич. констант скорости р-ции теряют смысл и сечение р-ции становится ее единственной характеристикой.

Количеств. оценка скорости Б. р. и расчет констант скорости - чрезвычайно сложная задача, требующая знания ф-ций распределения реагирующих частиц и частиц продуктов по внутр. степеням свободы. Информация о столкновениях между отдельными молекулами на предварительно выбранных энергетич. уровнях стала доступной благодаря использованию молекулярных пучков метода. Для экзотермич. р-ций очень важно исследование ф-ции распределения молекул продуктов по колебательно-вращательным состояниям. Если это распределение сильно неравновесно, запасенная в молекулах энергия м. б. непосредственно превращена в когерентное электромагн. излучение хим. лазера. Другое практич. применение сведений о кинетике неравновесных Б. р. связано с возможностью избирательного увеличения скорости эндотермич. р-ций путем предварительного перевода молекул реагентов в определенные возбужденные состояния. Е.Е. Никитин.

Реакции в жидкостях и твердых телах. Частицы, реагирующие друг с другом в жидкости или в твердом теле, сильно взаимод. с окружением, поэтому ф-ция распределения их по энергии является, как правило, максвелл-больцмановской, а кинетика Б. р.-равновесной. Лимитирующая стадия таких р-ций - собственно хим. взаимод. при контакте реагирующих частиц или диффузионное сближение частиц. В последнем случае скорость р-ции контролируется диффузией, и энергия активации р-ции совпадает с энергией активации диффузии. В твердых телах диффузионное перемещение частиц замедляется настолько, что сближение реакционных центров осуществляется по недиффузионным механизмам: посредством миграции своб. валентности -эстафетной передачей атома Н (в радикальных р-циях), эстафетным переносом протона или электрона, миграцией экситона (в р-циях электронно-возбужденных частиц). Низкая молекулярная подвижность в конденсированной фазе обеспечивает также относительно большое время жизни партнеров-частиц в состоянии контакта и более высокую вероятность р-ции по сравнению с соответствующими газофазными р-циями (см. Клетки эффект).

Важная особенность Б. р. в жидкостях и твердых телах — сольватация реагентов, к-рая изменяет реакционную способность и состав реагирующих частиц (напр., соотношение своб. и сольватированных радикалов, ионов и ионных пар, молекул и их ассоциатов и т.д.). Сольватация изменяет скорость, а часто и направление и механизм Б. р., влияет на выход продуктов и является поэтому эффективным способом управления р-цией.

Лит.: Термические бимолекулярные реакции в газах, М., 1976; Энтелис С. Г., Тигер Р. П., Кинетика реакций в жидкой фазе, М.. 1973. А. Л. Бучаченко.


"бутилксантогенат" 1,3-бензодиоксол 1,3-бутадиен 1,4-бензодиазепин 4-трет-бутилциклогексилацетат N-бензоил-n-фенилгидроксиламин S-бензилтиуронийхлорид Байера-виллигера реакция Бактериальные удобрения Бактериородопсин Бактерициды Балата Баллиститы Бальзамы Барбамил Барбитуровая кислота Барботирование Барбье-виланда реакция Барий Барит Бария гидроксид Бария карбонат Бария нитрат Бария оксид Бария сульфат Бария титанат Бария фторид Бария хлорид Барта реакция Бартона правила Бартона реакция Батохромный сдвиг Безградиентный реактор Безотходные производства Безызлучательные переходы Бейльштейна проба Бекмана перегруппировка Белая сажа Белки Белки-переносчики Белоусова - жаботинского реакция Белые масла Бензальдегид Бензальхлорид Бензамид Бензанилид Бензантрон Бензидин Бензидиновая перегруппировка Бензизоксазол Бензизотиазол Бензил Бензиламин Бензиловая перегруппировка Бензилхлорид Бензилцианид Бензимидазол Бензины Бензины-растворители Бензйловый спирт Бензо- и маслостойкость Бензо-2,1,3-селенадиазол Бензо-2,1,3-тиадиазол Бензогексоний Бензоилацетон Бензоилпероксид Бензоилуксусный эфир Бензоилфторид Бензоилхлорид Бензоин Бензоиновая конденсация Бензойная кислота Бензойная смола Бензоксазол Бензол Бензолполикарбоновые кислоты Бензолсульфамиды Бензолсульфокислоты Бензолсульфохлориды Бензонитрил Бензопираны Бензопирены Бензопиридазины Бензопирилия соли Бензоптеридины Бензотиазол Бензотиофены Бензотриазол Бензотрифторид Бензотрихлорид Бензофенон Бензофураны Бензохиноны Берберин Бергамилат Бергаптен Бериллий Бериллийорганические соединения Бериллия оксид Бериллия фторид Берклий Бесстружковый анализ Бетаины Бетон Бизаболен Бикомпонентные нити Бикукулин Бимолекулярные реакции Биокоррозия Биологические методы анализа Бионеорганическая химия Биоорганическая химия Биополимеры Биосинтез Биосфера Биотехнология Биотин Биофлавоноиды Биохимия Биоциды Биоэлектрохимия Биоэнергетика Бирадикалы Бисфенол Битуминозные пески Битумные лаки Битумные материалы Битумы Битумы нефтяные Битумы твердых горючих ископаемых Биурет Биуретовая реакция Бифенил Бишлера реакция Бишлера-напиральского реакция Благородные газы Благородные металлы Блеомицины Блоксополимеры Блочная полимеризация Бобровая струя Бойля-мариотта закон Болотный газ Больцмана постоянная Бона-шмидта реакция Бор Бора карбиды Бора нитрид Бора оксиды Бора трифторид Бора трихлорид Боразол Бораты неорганические Бораты органические Бориды Борнеолы Борные кислоты Борные руды Борные удобрения Бороводороды Боровский радиус Борогидриды металлов Бородина - хунсдиккера реакция Боропластики Борорганические полимеры Борорганические соединения Ботулинические токсины Брауна правило селективности Брауна реакция Брауна-уокера реакция Бредта правило Бризантные взрывчатые вещества Брожение Бром Броматометрия Броматы Бромбензилцианид Бромбензолы Бромирование Бромное число Бромпирогалловый красный Бромстирол Бронзы Бронзы оксидные Бруцин Брюстера метод Брёнстеда уравнение Буво-блана восстановление Букарбан Бульвален Бумага Бумага синтетическая Бумажная хроматография Бура Бурые угли Бутадиен-нитрильные каучуки Бутадиен-стирольные каучуки Бутадиеновые каучуки Бутадион Бутанолы Бутаны Бутены Бутилакрилаты Бутиламины Бутилацетаты Бутиленгликоли Бутилены Бутилкаучук Бутиллитий Бутилметакрилаты Бутиловые спирты Бутиндиолы Бутиролактон Бутлерова реакция Буферный раствор Буфотенин Бухерера реакции Бухнера - курциуса - шлоттербека реакция Бытовая химия Бэмфорда-стивенса реакция Бёрча реакция Трет-бутилгидропероксид Трет-бутилпероксид