Словарь научных терминов
Атом

АТОМ (от греч. atomos - неделимый), наименьшая частица хим. элемента, носитель его св-в. Каждому хим. элементу соответствует совокупность определенных А. Связываясь друг с другом, А. одного или разных элементов образуют более сложные частицы, напр. молекулы. Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями А. между собой. А. могут существовать и в своб. состоянии (в газе, плазме). Св-ва А., в т. ч. важнейшая для химии способность А. образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. А. состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных электронов. Размеры А. в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра А^ (линейные размеры А. ~ 10~8см, его ядра ~ 10" -10" 13 см). Электронное облако А. не имеет строго определенных границ, поэтому размеры А. в значит. степени условны и зависят от способов их определения (см. Атомные радиусы). Ядро А. состоит из Z протонов и N нейтронов, удерживаемых ядерными силами (см. Ядро атомное). Положит. заряд протона и отрицат. заряд электрона одинаковы по абс. величине и равны е= 1,60*10-19 Кл; нейтрон не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика А., обусловливающая его принадлежность к определенному хим. элементу. Порядковый номер элемента в периодич. системе Менделеева (атомный номер) равен числу протонов в ядре.

В электрически нейтральном А. число электронов в облаке равно числу протонов в ядре. Однако при определенных условиях он может терять или присоединять электроны, превращаясь соотв. в положит. или отрицат. ион, напр. Li+, Li2+ или О-, О2-. Говоря об А. определенного элемента, подразумевают как нейтральные А., так и ионы этого элемента.

Масса А. определяется массой его ядра; масса электрона (http://www.medpulse.ru/image/encyclopedia/6/1/3/2613.jpeg9,109*10-28 г) примерно в 1840 раз меньше массы протона или нейтрона (http://www.medpulse.ru/image/encyclopedia/6/1/4/2614.jpeg 1,67*10-24 г), поэтому вклад электронов в массу А. незначителен. Общее число протонов и нейтронов А = Z + N наз. массовым числом. Массовое число и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 2311Na. Вид атомов одного элемента с определенным значением N наз. нуклидом. А. одного и того же элемента с одинаковыми Z и разными N наз. изотопами этого элемента. Различие масс изотопов мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия (изотопные эффекты)наблюдаются у изотопов водорода вследствие большой относит. разницы в массах обычного атомаhttp://www.medpulse.ru/image/encyclopedia/6/1/5/2615.jpeg (протия), дейтерия Dhttp://www.medpulse.ru/image/encyclopedia/6/1/6/2616.jpeg и трития Тhttp://www.medpulse.ru/image/encyclopedia/6/1/7/2617.jpeg. Точные значения масс А. определяют методами масс-спектрометрии.

Квантовые состояния атома. Благодаря малым размерам и большой массе ядро А. можно приближенно считать точечным и покоящимся в центре масс А. и рассматривать А. как систему электронов, движущихся вокруг неподвижного центра - ядра. Полная энергия такой системы Е равна сумме кинетич. энергий Т всех электронов и потенциальной энергии U, к-рая складывается из энергии притяжения электронов ядром и энергии взаимного отталкивания электронов друг от друга. А. подчиняется законам квантовой механики; его осн. характеристика как квантовой системы - полная энергия Е - может принимать лишь одно из значений дискретного ряда Е1 < Е2 < Е3 < ...; промежут. значениями энергии А. обладать не может. Каждому из "разрешенных" значений Е соответствует одно или неск. стационарных (с не изменяющейся во времени энергией) состояний А. Энергия Е может изменяться только скачкообразно - путем квантового перехода А. из одного стационарного состояния в другое. Методами квантовой механики можно точно рассчитать Е для одноэлектронных А. - водорода и водородоподобных: Е= —hcRZ2/n2, где h - постоянная Планка, с-скорость света, целое число п = 1, 2, 3, ... определяет дискретные значения энергии и наз. главным квантовым числом; R-постоянная Ридберга (hcR = 13,6 эВ). При использовании СИ ф-ла для выражения дискретных уровней энергии одноэлектронных А. записывается в виде:
http://www.medpulse.ru/image/encyclopedia/6/1/8/2618.jpeg

где те- масса электрона,http://www.medpulse.ru/image/encyclopedia/6/1/9/2619.jpeg-электрич. постоянная,http://www.medpulse.ru/image/encyclopedia/6/2/0/2620.jpeg Возможные "разрешенные" значения энергии электронов в А. изображают в виде схемы уровней энергии - горизонтальных прямых, расстояния между к-рыми соответствуют разностям этих значений энергий (рис. 1). наиб. низкий уровень E1, отвечающий минимально возможной энергии, наз. основным, все остальные - возбужденными. Аналогично наз. состояния (основное и возбужденныеХ к-рым соответствуют указанные уровни энергии. С ростом п уровни сближаются и приhttp://www.medpulse.ru/image/encyclopedia/6/2/1/2621.jpeg энергия электрона приближается к значению, отвечающему своб. (покоящемуся) электрону, удаленному из А. Квантовое состояние А. с энергией Е полностью описывается волновой ф-циейhttp://www.medpulse.ru/image/encyclopedia/6/2/2/2622.jpeg, где r-радиус-вектор электрона относительно ядра. Произведениеhttp://www.medpulse.ru/image/encyclopedia/6/2/3/2623.jpeg равно вероятности нахождения электрона в объеме dV, то естьhttp://www.medpulse.ru/image/encyclopedia/6/2/4/2624.jpeg -плотность вероятности (электронная плотность). Волновая ф-цияhttp://www.medpulse.ru/image/encyclopedia/6/2/5/2625.jpeg определяется уравнением Шрёдингераhttp://www.medpulse.ru/image/encyclopedia/6/2/6/2626.jpeg=http://www.medpulse.ru/image/encyclopedia/6/2/7/2627.jpeg, где R-оператор полной энергии (гамильтониан).

Наряду с энергией движение электрона вокруг ядра (орбитальное движение) характеризуется орбитальным моментом импульса (орбитальным мех. моментом) М1; квадрат его величины может принимать значения, определяемые орбитальным квантовым числом l = 0, 1, 2, ...;http://www.medpulse.ru/image/encyclopedia/6/2/8/2628.jpeg , гдеhttp://www.medpulse.ru/image/encyclopedia/6/2/9/2629.jpeg . При заданном и квантовое число l может принимать значения от 0 до (и — 1). Проекция орбитального момента на нек-рую ось z также принимает дискретный ряд значений Мlz =http://www.medpulse.ru/image/encyclopedia/6/3/0/2630.jpeg, где ml-магнитное квантовое число, имеющее дискретные значения от — l до +l(-l,... - 1, О, 1, ... + l), всего 2l + 1 значений. Ось z для А. в отсутствие внеш. сил выбирается произвольно, а в магн. поле совпадает с направлением вектора напряженности поля. Электрон обладает также собственным моментом импульса -спином и связанным с ним спиновым магн. моментом. Квадрат спинового мех. момента МS2 =http://www.medpulse.ru/image/encyclopedia/6/3/1/2631.jpegS(S + + 1) определяется спиновым квантовым числом S = 1/2, а проекция этого момента на ось z Msz = =http://www.medpulse.ru/image/encyclopedia/6/3/2/2632.jpeg-квантовым числом ms, принимающим полуцелые значения ms=1/2 и ms = -1/2.
http://www.medpulse.ru/image/encyclopedia/6/3/3/2633.jpeg

Рис. 1. Схема уровней энергии атома водорода (горизонтальные линии) и оптич. переходов (вертикальные линии). Внизу изображена часть атомного спектра испускания водорода - две серии спектральных линий; пунктиром показано соответствие линий и переходов электрона.

Стационарное состояние одноэлектронного А. однозначно характеризуется четырьмя квантовыми числами: п, l, ml и ms. Энергия А. водорода зависит только от п, и уровню с заданным п соответствует ряд состояний, отличающихся значениями l, ml, ms. Состояния с заданными п и l принято обозначать как 1s, 2s, 2p, 3s и т.д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому алфавиту соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными п и д равно 2(2l+ 1) числу комбинаций значений ml и ms. Общее число разл. состояний с заданным п равноhttp://www.medpulse.ru/image/encyclopedia/6/3/4/2634.jpeg , т. е. уровням со значениями п = 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n2 разл. квантовых состояний. Уровень, к-рому соответствует лишь одно квантовое состояние (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более квантовых состояний, он наз. вырожденным (см. Вырождение энергетических уровней). В А. водорода уровни энергии вырождены по значениям l и ml; вырождение по ms имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента электрона с магн. полем, обусловленным орбитальным движением электрона в электрич. поле ядра (см. Спин-орбитальное взаимодействие). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т.к. приводит к дополнит. расщеплению уровней энергии, что проявляется в атомных спектрах в виде т. наз. тонкой структуры.

При заданных n, l и ml квадрат модуля волновой ф-цииhttp://www.medpulse.ru/image/encyclopedia/6/3/5/2635.jpeg определяет для электронного облака в А. среднее распределение электронной плотности. Разл. квантовые состояния А. водорода существенно отличаются друг от друга распределением электронной плотности (рис. 2). Так, при l = 0 (s-состояния) электронная плотность отлична от нуля в центре А. и не зависит от направления (т.е. сферически симметрична), для остальных состояний она равна нулю в центре А. и зависит от направления.
http://www.medpulse.ru/image/encyclopedia/6/3/6/2636.jpeg

Рис. 2. Форма электронных облаков для различных состояний атома водорода.

В многоэлектронных А. вследствие взаимного электростатич. отталкивания электронов существенно уменьшается прочность их связи с ядром. Напр., энергия отрыва электрона от иона Не+ равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых А. связь внеш. электронов с ядром еще слабее. Важную роль в многоэлектронных А. играет специфич. обменное взаимодействие, связанное с неразличимостью электронов, и тот факт, что электроны подчиняются Паули принципу, согласно к-рому в каждом квантовом состоянии, характеризуемом четырьмя квантовыми числами, не может находиться более одного электрона. Для многоэлектронного А. имеет смысл говорить только о квантовых состояниях всего А. в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать квантовые состояния отдельных электронов и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, ml и ms. Совокупность 2(2l+ 1) электронов в состоянии с данными п и l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты электронами, оболочка наз. заполненной (замкнутой). Совокупность 2п2 состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число электронов в оболочках и слоях при полном заполнении приведены в таблице:
http://www.medpulse.ru/image/encyclopedia/6/3/7/2637.jpeg

Прочность связи электрона в А., т. е. энергия, к-рую необходимо сообщить электрону, чтобы удалить его из А., уменьшается с увеличением п, а при данном п - с увеличением l. Порядок заполнения электронами оболочек и слоев в сложном А. определяет его электронную конфигурацию, т.е. распределение электронов по оболочкам в основном (невозбужденном) состоянии этого А. и его ионов. При таком заполнении последовательно связываются электроны с возрастающими значениями и и /. Напр., для А. азота (Z = 7) и его ионов N+, N2+, N3+, N4+, N5+ и N6+ электронные конфигурации имеют вид соотв.: Is22s22p3; Is22s22p2; Is22s22p; Is22s2; Is22s; Is2; Is (число электронов в каждой оболочке указывается индексом справа сверху). Такие же электронные конфигурации, как и у ионов азота, имеют нейтральные А. элементов с тем же числом электронов: С, В, Be, Li, He, Н (Z = 6, 5, 4, 3, 2, 1). Начиная с n = 4 порядок заполнения оболочек изменяется: электроны с большим п, но меньшим l оказываются связанными прочнее, чем электроны с меньшим п и большим l (правило Клечковского), напр. 4s-электроны связаны прочнее 3d-электронов, и сперва заполняется оболочка 4s, а затем 3d. При заполнении оболочек 3d, 4d, 5d получаются группы соответствующих переходных элементов; при заполнении 4f- и 5f-оболочек - соотв. лантаноиды и актиноиды. Порядок заполнения обычно соответствует возрастанию суммы квантовых чисел (п + l); при равенстве этих сумм для двух или более оболочек сначала заполняются оболочки с меньшим и. Имеет место след. последовательность заполнения электронных оболочек:
http://www.medpulse.ru/image/encyclopedia/6/3/8/2638.jpeg

Для каждого периода указаны электронная конфигурация благородного газа, макс. число электронов, а в последней строке приведены значения п + l. Имеются, однако, отступления от этого порядка заполнения (подробнее о заполнении оболочек см. Периодическая система химических элементов).

Между стационарными состояниями в А. возможны квантовые переходы. При переходе с более высокого уровня энергии Еi на более низкий Ek А. отдает энергию (Ei — Ek), при обратном переходе получает ее. При излучательных переходах А. испускает или поглощает квант электромагн. излучения (фотон). Возможны и безызлучательные переходы, когда А. отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в газах) или длительно связан (в молекулах, жидкостях и твердых телах). В атомарных газах в результате столкновения своб. А. с др. частицей он может перейти на др. уровень энергии - испытать неупругое столкновение; при упругом столкновении изменяется лишь кинетич. энергия постулат. движения А., а его полная внутр. энергия Е остается неизменной. Неупругое столкновение своб. А. с быстро движущимся электроном, отдающим этому А. свою кинетич. энергию, - возбуждение А. электронным ударом - один из методов определения уровней энергии А.

Строение атома и свойства веществ. Хим. св-ва определяются строением внеш. электронных оболочек А., в к-рых электроны связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек А. хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа электронов в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают электроны в замкнутой оболочке. Поэтому А. с одним или неск. электронами в частично заполненной внеш. оболочке отдают их в хим. р-циях. А., к-рым не хватает одного или неск. электронов для образования замкнутой внеш. оболочки, обычно принимают их. А. благородных газов, обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек А., электроны к-рых связаны гораздо прочнее (энергия связи 102-104 эВ), проявляется лишь при взаимод. А. с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц (электронов, нейтронов) на А. (см. Дифракционные методы). Масса А. определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра А. зависят нек-рые тонкие физ. эффекты (ЯМР, ЯКР, сверхтонкая структура спектральных линий, см Спектроскопия).

Более слабые по сравнению с хим. связью электростатич. взаимод. двух А. проявляются в их взаимной поляризуемости - смещении электронов относительно ядер и возникновении поляризац. сил притяжения между А. (см. Межмолекулярные взаимодействия). А. поляризуется и во внеш. электрич. полях; в результате уровни энергии смещаются и, что особенно важно, вырожденные уровни расщепляются (см. Штарка эффект). А. может поляризоваться также под действием электрич. поля волны электромагн. излучения; поляризация зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с поляризуемостью А. Тесная связь оптич. св-в А. с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

Внеш. электроны А. определяют и магн. св-ва в-ва. В А. с заполненными внеш. оболочками его магн. момент, как и полный момент импульса (мех. момент), равен нулю. А. с частично заполненными внеш. оболочками обладают, как правило, постоянными магн. моментами, отличными от нуля; такие в-ва парамагнитны (см. Парамагнетики). Во внеш. магн. поле все уровни энергии А., для к-рых магн. момент не равен нулю, расщепляются (см. Зеемана эффект). Все А. обладают диамагнетизмом, к-рый обусловлен возникновением у них индуцированного магн. момента под действием внеш. магн. поля (см. Диэлектрики).

Св-ва А., находящегося в связанном состоянии (напр., входящего в состав молекул), отличаются от св-в своб. А. наиб. изменения претерпевают св-ва, определяемые внеш. электронами, принимающими участие в хим. связи; св-ва, определяемые электронами внутр. оболочек, могут при этом практически не изменяться. Нек-рые св-ва А. могут испытывать изменения, зависящие от симметрии окружения данного атома. Примером может служить расщепление уровней энергии А. в кристаллах и комплексных соед., к-рое происходит под действием электрич. полей, создаваемых окружающими ионами или лигандами.

Лит.: Карапетьянц М. X., Дракин С.И., Строение вещества, 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.


(+ )-абсцизовая кислота 2,2 -азо-бис-изобутиронитрил 2-амино-2-метил-1-пропанол 2-амино-2-этил-1,3-пропандиол S-аденозилметионин Абляционныематериалы Абрамова реакция Абс-пластик Абсорбция Авиакеросин Авиважныесредства Авироль Авогадро закон Автокатализ Автокосметика Автолы Автоматизированное управление Автоматизированные системы научных исследований Автоокисление Агар Агрохимия Адамантан Адамкевича реакция Адамсит Адгезия Аддукт Аденилатциклаза Аденин Аденозин Аденозинмонофосфат циклический Аденозинтрифосфатазы Аденозинфосфорные кислоты Адиабатического сжатия метод Адиабатическое приближение Адипиновая кислота Адиподинитрил Адреналин Адреноблокирующие средства Адренокортикотропин Адреномиметические средства Адсорбционная очистка Адсорбция Азаиндолы Азатиоприн Азелаиновая кислота Азеотропные смеси Азепин Азетидин Азиды арилсульфокислот Азиды металлов Азиды органические Азиновые красители Азины Азиридин Азирины Азобензол Азогены Азокрасители Азоксисоединения Азолы Азометиновые красители Азометиновые соединения Азосоединения Азосочетание Азот Азота оксиды Азота фториды Азотистая кислота Азотистоводородная кислота Азотистые иприты Азотная кислота Азотные удобрения Азотолы Азотолы-ариламиды з-гидрокси-2-нафтойной кислоты Азотфиксация Азулены Аймалин Айнхорна реакция Акарициды Аквакомплексы Акваметрия Акватол Аккумуляторы Аконитин Акридин Акридиновые красители Акриламид Акрилатные каучуки Акрилаты Акриловая кислота Акриловые лаки Акрилонитрил Акрихин Акролеин Аксиальное и экваториальное положения Активационный анализ Активированного комплекса теория Активность Активные красители Активный уголь Актин Актиний Актиноиды Актинометрия Актиномицины Акустическая спектроскопия Акустические материалы Аланин Ализарин Ализариновое масло Ализариновый красный с Алифатические соединения Алициклические соединения Алкалиметрия Алкалоиды Алкалоиды дафнифиллума Алкалоиды ипекакуаны Алкалоиды ликоподиума Алкалоиды элаокарпуса Алкансульфонаты Алканфосфонаты Алканы Алкенилирование Алкены Алкидные смолы Алкилсульфаты Алкилтиурамсульфиды Алкилфенолы Алкилфосфаты Алкилфосфолипиды Алкины Алкоголиз Алкогольдегидрогеназа Алкоголяты Алкоксигруппа Алкоксисиланы и ароксисиланы Аллена реакция Аллены Аллиламины Аллилбензол Аллилбораны Аллилглицидиловый эфир Аллилизотиоцианат Аллилмеркаптан Аллиловый спирт Аллилхлорид Аллилцианид Аллильная перегруппировка Аллильное замещение Аллильные комплексы переходных металлов Аллильные соединения Аллооцимен Аллопуринол Алмаз Алхимия Альбумины Альгиновые кислоты Альгициды Альдегидаммиаки Альдегиддегидрогеназы Альдегидо- и кетокислоты Альдегиды Альдера правила Альдимины и кетимины Альдолазы Альдольная конденсация Альтернантные сополимеры Альтернантные углеводороды Альтернативные топлива Алюминаты Алюминий Алюминийорганические соединения Алюминия гидроксид Алюминия нитрат Алюминия нитрид Алюминия оксид Алюминия сплавы Алюминия сульфат Алюминия фосфаты Алюминия фторид Алюминия хлорид Алюмогидриды Алюмосиликаты Алюмотол Амадори перегруппировка Амальгамы Амариллисовые алкалоиды Амбидентные соединения Амбра Амений-катионы Америций Амидины Амиды карбоновых кислот Амилазы Амиламины Амилены Амиловые спирты Аминазин Аминирование Аминоалкилакрилаты Аминоалкилирование Аминоальдегиды и аминокетоны Аминоантрахинонсульфокислоты Аминоантрахиноны Аминоацил-трнк-синтетазы Аминобензойные кислоты h2nc6h4cooh Аминобензолсульфокислоты Аминов Аминогалогенантрахиноны Аминогликозидные антибиотики Аминодифениламины Аминокапроновая кислота Аминокислоты Аминолиз Аминометилирование Аминонафтолсульфокислоты Аминонафтолы Аминонитрилы Аминонитроанизолы Аминооксиантрахиноны Аминопептидазы Аминопиридины Аминопласты Аминосалициловые кислоты Аминосахара Аминоспирты Аминотолуолсульфокислоты Аминофенолы Аминоэтилэтаноламин Амины Амины третичные перфторированные Амиодарон Амитриптилин Аммиак Аммиакаты Аммиачная вода Аммины Аммоналы Аммониевые соединения Аммоний-катионы Аммониты Аммония гексафторосиликат Аммония карбонат Аммония нитрат Аммония пероксодисульфат Аммония перхлорат Аммония сульфат Аммония тиоцианат Аммония фосфаты Аммония фторид Аммония хлорид Аммонолиз Аммофос Амортизаторные жидкости Аморфное состояние Амперометрическое титрование Амфотерность Амфотерные ионообменные смолы Анабазин Анаболические вещества Аналептические средства Аналитическая химия Анальгетические средства Анаприлин Ангелицин Ангидриды карбоновых кислот Ангидриды неорганических кислот Ангидрон Андрогены Анетол Анзамицины Анзерин Анид Анизидины Анизол Анизотропия Анилиды Анилин Анилино-формальдегидные смолы Анилиновая точка Анилиновый чёрный Анионная полимеризация Анионообменные смолы Анионы Анисовый альдегид Аннелирование Аннулены Анодная защита Анодное оксидирование Анодное растворение Анри реакции Анса-соединения Анти..., син.. Антиалкогольные средства Антиаллергические средства Антиаритмические средства Антибиотики Антигеморрагические средства Антигены Антигистаминные средства Антидепрессанты Антидетонаторы моторных топлив Антидиабетические средства Антидоты Антидоты для растений Антикоагулянты Антикоррозионные материалы Антимонаты Антимониды Антинакипины Антиозонанты Антиоксиданты Антипирены Антипирин Антиподы оптические Антирады Антисептические средства Антистатики Антитиреоидные средства Антиферментные средства Антиферромагнетики Антифиданты Антифризы Антифрикционные материалы Антифрикционные смазки Антихолинэстеразные средства Античастицы Антоцианы Антраниловая кислота Антрахинон Антрахинонкарбоновые кислоты Антрахиноновые красители Антрахинонсульфокислоты Антрацен Антрациклины Антрацит Антрон Анхимерное содействие Апатит Апикальное положение Апоморфин Аппретирующие средства Арахидоновая кислота Арбитражный анализ Арборициды Арбузова реакция Аргентометрия Аргинин Аргон Ареноний-катионы Арены Арил Арилирование Арилметановые красители Арилсульфатазы Арилсульфотрансфераза Арины Армированные пластики Арндта-айстерта реакция Ароксильные радикалы Ароматизация Ароматические соединения Ароматичность Аррениуса уравнение Арсеназо Арсенаты Арсениды Арсин Арсингалогениды Арсоний-катионы Асбопластики Асидол Асимметрический атом Асимметрический синтез Аскаридол Аспарагин Аспарагиназы Аспарагиновая кислота Аспартам Аспартат-карбамоилтрансфераза Аспартатаминотрансфераза Аспергилловая кислота Астат Асфальт Асфальтены Атмосфера Атмосферная коррозия Атмосферно-вакуумные установки Атмосферостойкость Атом Атомная единица массы Атомная масса Атомно-абсорбционный анализ Атомно-флуоресцентный анализ Атомные радиусы Атомные спектры Атропин Атропоизомерия Аттрактанты Ауверса-скиты правило Ауксины Афелий Аффинная хроматография Аценафтен Аценафтенхинон Аценафтилен Ацетали амидов карбоновых кислот Ацетали и кетали Ацетальдегид Ацетамид Ацетанилид Ацетатные волокна Ацетаты Ацетил-соа-синтетаза Ацетила пероксид Ацетилацетон Ацетилен Ацетилендикарбоновая кислота Ацетиленовые комплексы переходных металлов Ацетиленовые углеводороды Ацетилсалицйловая кислота Ацетилхлорид Ацетилхолин Ацетилхолинэстераза Ацетон Ацетонитрил Ацетонорастворимые красители Ацетонциангидрин Ацетоуксусный эфир Ацетофенон Ацефен Аци-нитросоединения Ацидиметрия Ацидокомплексы Ацидолиз Ациклические соединения Ацилирование Ацилоиновая конденсация Ацилоины Ацильное число Аэрозоли Аэросил