Словарь научных терминов
Алкоголяты

АЛКОГОЛЯТЫ, продукты замещения атома Н в молекуле спирта на металл (М).

Алкоголята одноатомных спиртов. Их общая ф-ла M(OR)n, где n-степень окисления металла. А. щелочных, щел.-зем. металлов, Т1(1) и первичных спиртов-ионные соед.; неплавки, нелетучи; т. разл. 200-300 °С; раств. в спиртах и жидком NH3; электролиты в р-ре. Из спиртовых р-ров обычно выделяются в виде кристаллосольватов. Производные металлов III-VIII групп и спиртов (начиная с С2Н5ОН), а также M1OR-mpem- молекулярные мономерные или олигомерные соед.; имеют низкие т-ры плавления и кипения; хорошо раств. в неполярных р-рителях, плохо-в спиртах; р-ры не проводят ток. Метилаты тех же элементов-обычно координац. полимеры; неплавки, нелетучи; не раств. ни в одном из р-рителей. Большинство А. элементов середины периодич. системы сочетают св-ва ионных и молекулярных соед. (см. табл.). Все А. очень гигроскопичны.

ХАРАКТЕРИСТИКА АЛКОГОЛЯТОВ [М(ОН)n]m
http://www.medpulse.ru/image/encyclopedia/5/3/4/1534.jpeg

* т-степень ассоциации; стрелкой показано изменение т при старении.

С удлинением R в гомологич. рядах т-ра плавления, плотность, показатель преломления, р-римость в спирте обычно снижаются, а т-ра кипения (возгонки),http://www.medpulse.ru/image/encyclopedia/5/3/5/1535.jpegН иhttp://www.medpulse.ru/image/encyclopedia/5/3/6/1536.jpegS испарения, вязкость увеличиваются. Пространств. затруднения, возрастающие при переходе от первичных R к вторичным и третичным, препятствуют ассоциации молекул. В этом же ряду снижаются т-ра кипения (см. рис. 1), вязкость и возрастает р-римость в неполярных р-рителях. А. ряда многовалентных металлов, напр. Al, Ga, Ti, Fe(III), образуют неск. ассоциатов разл. состава и строения (напр., ф-лы VI и IX). Их олигомерные и полимерные молекулы способны к взаимным превращ., поэтому физ.-хим. св-ва и реакц. способность отдельных препаратов А. могут изменяться в весьма широких пределах (см. рис. 2).
http://www.medpulse.ru/image/encyclopedia/5/3/7/1537.jpeg

Рис. I. Зависимость т-ры кипения изомерных амилатов Ti, Mb, Al, U от разветвленности R.
http://www.medpulse.ru/image/encyclopedia/5/3/8/1538.jpeg

Рис. 2. Зависимость т-ры плавления [А1(ОС3Н7-изо)з]т от степени ассоциации (т) и времени хранения (с момента начала кристаллизации).

Строение ассоциатов определяется принципом "миним. степени полимеризации", согласно к-рому все атомы М достигают устойчивых координац. чисел (благодаря донорно-акцепторному взаимод. между своб. орбиталями М и парами электронов атомов О алкоксильных групп соседних молекул). А. мономерны только в случае полидентатных или очень разветвленных алкоксилов (см. ф-лы I, II). Ассоциаты могут иметь разнообразное строение. Димеры способны образовать структуру из двух многогранников, напр. тетраэдров (III) или октаэдров (IV) с общим ребром (OR)2, кластеры Мо или W, содержащие кратные связи М—M(V). Молекулы тримеров представляют собой обычно циклоли-нейные цепочки (VI), тетрамеров-кубаны (ТЮСН3, КОС4Н9-трет, CH3ZnOCH3, VII), плоские молекулы из четырех октаэдров с общими ребрами (VIII) или молекулы с центральным октаэдром и тремя тетраэдрами по его ребрам (IX). Метилаты, этилаты и изопропилаты щелочных и щел.-зем. металлов образуют полимерные кристаллич. структуры из слоев тетраэдров (типа анти-РbО) и октаэдров [типа Са(ОН)2] соответственно.
http://www.medpulse.ru/image/encyclopedia/5/3/9/1539.jpeghttp://www.medpulse.ru/image/encyclopedia/5/4/0/1540.jpeg

Комплексообразование со спиртами, сопровождающееся выделением устойчивых кристаллосольватов [напр., LiOCH3*2CH3OH, т. разл. 28°С; NaOC2H5*2C2H5OH, т. разл. 200°С; Са(ОС2Н5)2*nС2Н5ОН, где п = 4 и 2, т. разл. 60 и 100°С], свойственно гл. обр. А. щелочных и щел.-зем. металлов; в случае многовалентных металлов сольваты со спиртами и др. основаниями Льюиса малоустойчивы, т.к. акцепторная ф-ция М удовлетворяется благодаря образованию прочных OR-мостиков в молекулах ассоциатов. Известны сольваты [М (ОС3Н7-изо)4*L]2, где М = Sn, Zr; L = = изо-С3Н7ОН, ТГФ, пиридин, 2Ti(OR)4*En, 2А1(ОС3Н7-изо)3*Еn [En=(—CH2NH2)2], легко подвергающиеся десольватации. Вместе с тем Al [OCH(CF3)2]3*L [L = (C2H5)2O, (C2H5)3N, (C2H5)3P] перегоняются в вакууме без разложения.

При взаимод. двух разл. А. в р-ре или расплаве образуются биметаллич. А. (алкоксосоли Меервейна), для к-рых более характерны св-ва молекулярных соед., чем для компонентов, образующих их. Так, Mg[Al(OC2H5)4]2 в отличие от полимерных этилатов Mg и А1 неограниченно раств. в орг. р-рителях, перегоняется при 195°С/0,1 мм рт.ст. (т. пл. 181°С), образует димеры, весьма устойчивые в газовой фазе и р-ре. Комплексообразование А. с галогенидами металлов приводит к алкоксогалогенидам —М (OR)nHalm. Ангидриды минер. к-т при взаимод. с А. образуют соли алкилированных к-т:
http://www.medpulse.ru/image/encyclopedia/5/4/1/1541.jpeg

где ЭХ2 = СО2, SO2, CS2; M = Na, Си. А. типа (изо-RO)3Mo=Mo(OR-изо)3 обратимо связывает СО, СО2 и необратимо - О2, NO, C2H2; присоединенные лиганды L (за исключением О2 и NO) становятся мостиковыми:
http://www.medpulse.ru/image/encyclopedia/5/4/2/1542.jpeg

С соед., содержащими активный атом Н, А. вступают в р-цию обмена: М (OR)n + п НХ -> МХn + n ROH, где X = Hal, ОН, OR, SH, NH2 и др. Р-цию широко применяют в синтезе безводных неорг. и орг. производных металлов, т.к. единственный побочный продукт в этом случае-спирт.

При контролируемом гидролизе А. многовалентных металлов следами влаги кристаллизуют продукты, содержащие оксо-мостики (см., напр., ф-лу X). Конечные продукты гидролиза А. - гидроксиды; они отличаются высокой реакц. способностью, образуют устойчивые гидрогели и дегидратируются при весьма низких т-рах с образованием мелкодисперсных оксидов.

В окислит.-восстановит. р-ции, сопровождающиеся изменением степени окисления М, вступают в осн. А. переходных металлов (р-цию используют для получения А. тех же металлов в новых степенях окисления).

А. щелочных или щел.-зем. металлов получают взаимод. металла со спиртом. Иногда эту р-цию проводят в р-ре углеводорода или жидкого NH3. Бериллий, Al, Y, Ln реагируют со спиртами в присут. HgCl2, I2, HHal или галогенидов тех же металлов. Алкоголяты Ge, Ti, Zr, Nb, Та, Y, Sc и La получают анодным окислением металла в спирте в присут. электропроводной добавки [R4N] Br. Алкоголяты щелочных, щел.-зем. металлов, T1(I), V(V), Mo (VI), Re (VII), Os (VIII) получают также алкоголизом их оксидов или гидроксидов:
http://www.medpulse.ru/image/encyclopedia/5/4/3/1543.jpeg

Равновесие смещают вправо связыванием или удалением воды отгонкой. Достаточно универсален метод синтеза А. алкоголизом ряда соед.:
http://www.medpulse.ru/image/encyclopedia/5/4/4/1544.jpeg

где X = Н, R', NH2, NR2, N[Si(CH3)3]2- Однако применение этого метода ограничено трудностями синтеза МХn. А. синтезируют также алкоксилированием хлоридов металлов щелочными А. или смесью NH3 с ROH, обычно в спиртовом или спирто-бензольном р-ре, напр.:
http://www.medpulse.ru/image/encyclopedia/5/4/5/1545.jpeg

где М = Na, Li, NR4; nhttp://www.medpulse.ru/image/encyclopedia/5/4/6/1546.jpeg3. В синтезе р-римых А. используют NaOR (NaCl выпадает в осадок), в синтезе нерастворимых, напр. мeтилaтoв,-LiOR (LiCl раств. в СН3ОН). Р-ция протекает через образование биметаллич. А. Модификация метода - взаимод. легкодоступных пиридиниевых солей хлорометаллатов с NH3:
http://www.medpulse.ru/image/encyclopedia/5/4/7/1547.jpeg

где Ру = пиридин, М = Zr, Ce(IV), Pu(IV), UO3+ , UO22+. Равновесие "переэтерификации" А. др. спиртом: М (OR)n + п R'OHhttp://www.medpulse.ru/image/encyclopedia/5/4/8/1548.jpegМ (OR')n + п ROH сдвигают вправо отгонкой азеотропа ROH с бензолом или многократным введением новых порций ROH. В случае близких т-р кипения обоих спиртов целесообразна замена ROH сложным эфиром:
http://www.medpulse.ru/image/encyclopedia/5/4/9/1549.jpeg

А. ряда переходных металлов м. б. получены окислит.-восстановит. р-циями, напр. окислением Cr(OR-трет)3 кислородом, бромом или Рb(СН3СОО)4 до Cr(OR-трет)4. Окислителями служат сложные эфиры, напр. U(OR)5 превращ. при их действии в U(OR)6. Восстановление (NH4)2CrO4 в спиртовом р-ре под действием УФ-облучения приводит к Cr(OR)3; Ti(OR)4 восстанавливается металлич. К до Ti(OR)3.

А. одноатомных спиртов используют для селективного восстановления группы С=О (см. Меервепна-Понндорфа-Верлея реакция, Оппеиауэра реакция), как катализаторы диспропорционирования альдегидов (см. Тищенко реакция), конденсации, полимеризации и др. Щелочные А.-алкоксилирующие агенты (см. Вильямсона синтез). Алкоголяты А1 и Ti-гидрофобизаторы и сшивающие агенты для эпоксидных и полиэфирных смол, кремнийорг. полимеров. Продукты частичного гидролиза и пиролиза А.-полиорганометаллоксаны-компоненты термостойких покрытий. Из А. в результате их гидролиза, пиролиза или окисления получают высокочистые и активные оксиды металлов.

Алкоголяты гликолей и многоатомных спиртов. Наиб. изучены А. глицерина (глицераты) и А. гликолей (гликоляты).

А. многоатомных спиртов и гликолей -хелаты (мономерные, олигомерные) или полимеры, содержащие полидентатные лиганды. Хелаты встречаются чаще всего среди А. с не полностью замещенными группами ОН в исходном спирте (напр., ф-ла XI). Такие А. склонны к образованию сольватов с любыми спиртами. Представляют собой гигроскопичные кристаллы; производные щелочных и щел.-зем. металлов раств. в спиртах, разлагаются ниже 200°С, производные многова-. лентных металлов (Со, Ti или др.) раств. также в неполярных р-рителях, летучи и низкоплавки. Полностью замещенные А.-аморфные полимеры, реже-кристаллические (напр., глицерат Со ф-лы XII). В отличие от M(OAlk)n они устойчивы к гидролизу, нерастворимы, неплавки, термостойки.
http://www.medpulse.ru/image/encyclopedia/5/5/0/1550.jpeg

Однозамещенные А. образуются действием на многоатомные спирты и диолы избытка щелочного, щел.-зем. металла или MOAlk; полностью замещенные А. тех же металлов-диспропорционированием при высоких т-рах:

2NaO(CH2)2OHhttp://www.medpulse.ru/image/encyclopedia/5/5/1/1551.jpeg NaO(CH2)2ONa + НО(СН2)2ОН

Двухзамещенные гликоляты и трехзамещенные глицераты многовалентных металлов получают взаимод. оксидов, гидроксидов, М (ОА1к)n, оксалатов, ацетатов соотв. с гликолем или глицерином при т-рах выше 250°С.

Особый класс - пирофорные продукты взаимод. СО со щелочными или щел.-зем. металлами (считавшиеся раньше "солями гексаоксибензола"). Они представляют собой двухзамещенные производные гипотетич. ацетилендиола НОСhttp://www.medpulse.ru/image/encyclopedia/5/5/2/1552.jpegСОН.

Лит.: Турова Н. Я.. Новоселова А. В., "Успехи химии", 1965. т. 34, в. 3, с. 385-433; Пенкось Р., там же, 1968, т. 37, в. 4, с. 647-76; Брэдл и Д., там же, 1979, т. 47, в. 4, с. 638-78; Новоселова А.В. [и др.], "Изв. АН СССР, Сер. неорг. материалы", 1979, т. 15, № 6, с. 1055-67; Шрейдер В. А. [и др.], "Изв. АН СССР, Сер. хим.", 1981, № 8, с. 1687-92. Н.Я. Турова.


(+ )-абсцизовая кислота 2,2 -азо-бис-изобутиронитрил 2-амино-2-метил-1-пропанол 2-амино-2-этил-1,3-пропандиол S-аденозилметионин Абляционныематериалы Абрамова реакция Абс-пластик Абсорбция Авиакеросин Авиважныесредства Авироль Авогадро закон Автокатализ Автокосметика Автолы Автоматизированное управление Автоматизированные системы научных исследований Автоокисление Агар Агрохимия Адамантан Адамкевича реакция Адамсит Адгезия Аддукт Аденилатциклаза Аденин Аденозин Аденозинмонофосфат циклический Аденозинтрифосфатазы Аденозинфосфорные кислоты Адиабатического сжатия метод Адиабатическое приближение Адипиновая кислота Адиподинитрил Адреналин Адреноблокирующие средства Адренокортикотропин Адреномиметические средства Адсорбционная очистка Адсорбция Азаиндолы Азатиоприн Азелаиновая кислота Азеотропные смеси Азепин Азетидин Азиды арилсульфокислот Азиды металлов Азиды органические Азиновые красители Азины Азиридин Азирины Азобензол Азогены Азокрасители Азоксисоединения Азолы Азометиновые красители Азометиновые соединения Азосоединения Азосочетание Азот Азота оксиды Азота фториды Азотистая кислота Азотистоводородная кислота Азотистые иприты Азотная кислота Азотные удобрения Азотолы Азотолы-ариламиды з-гидрокси-2-нафтойной кислоты Азотфиксация Азулены Аймалин Айнхорна реакция Акарициды Аквакомплексы Акваметрия Акватол Аккумуляторы Аконитин Акридин Акридиновые красители Акриламид Акрилатные каучуки Акрилаты Акриловая кислота Акриловые лаки Акрилонитрил Акрихин Акролеин Аксиальное и экваториальное положения Активационный анализ Активированного комплекса теория Активность Активные красители Активный уголь Актин Актиний Актиноиды Актинометрия Актиномицины Акустическая спектроскопия Акустические материалы Аланин Ализарин Ализариновое масло Ализариновый красный с Алифатические соединения Алициклические соединения Алкалиметрия Алкалоиды Алкалоиды дафнифиллума Алкалоиды ипекакуаны Алкалоиды ликоподиума Алкалоиды элаокарпуса Алкансульфонаты Алканфосфонаты Алканы Алкенилирование Алкены Алкидные смолы Алкилсульфаты Алкилтиурамсульфиды Алкилфенолы Алкилфосфаты Алкилфосфолипиды Алкины Алкоголиз Алкогольдегидрогеназа Алкоголяты Алкоксигруппа Алкоксисиланы и ароксисиланы Аллена реакция Аллены Аллиламины Аллилбензол Аллилбораны Аллилглицидиловый эфир Аллилизотиоцианат Аллилмеркаптан Аллиловый спирт Аллилхлорид Аллилцианид Аллильная перегруппировка Аллильное замещение Аллильные комплексы переходных металлов Аллильные соединения Аллооцимен Аллопуринол Алмаз Алхимия Альбумины Альгиновые кислоты Альгициды Альдегидаммиаки Альдегиддегидрогеназы Альдегидо- и кетокислоты Альдегиды Альдера правила Альдимины и кетимины Альдолазы Альдольная конденсация Альтернантные сополимеры Альтернантные углеводороды Альтернативные топлива Алюминаты Алюминий Алюминийорганические соединения Алюминия гидроксид Алюминия нитрат Алюминия нитрид Алюминия оксид Алюминия сплавы Алюминия сульфат Алюминия фосфаты Алюминия фторид Алюминия хлорид Алюмогидриды Алюмосиликаты Алюмотол Амадори перегруппировка Амальгамы Амариллисовые алкалоиды Амбидентные соединения Амбра Амений-катионы Америций Амидины Амиды карбоновых кислот Амилазы Амиламины Амилены Амиловые спирты Аминазин Аминирование Аминоалкилакрилаты Аминоалкилирование Аминоальдегиды и аминокетоны Аминоантрахинонсульфокислоты Аминоантрахиноны Аминоацил-трнк-синтетазы Аминобензойные кислоты h2nc6h4cooh Аминобензолсульфокислоты Аминов Аминогалогенантрахиноны Аминогликозидные антибиотики Аминодифениламины Аминокапроновая кислота Аминокислоты Аминолиз Аминометилирование Аминонафтолсульфокислоты Аминонафтолы Аминонитрилы Аминонитроанизолы Аминооксиантрахиноны Аминопептидазы Аминопиридины Аминопласты Аминосалициловые кислоты Аминосахара Аминоспирты Аминотолуолсульфокислоты Аминофенолы Аминоэтилэтаноламин Амины Амины третичные перфторированные Амиодарон Амитриптилин Аммиак Аммиакаты Аммиачная вода Аммины Аммоналы Аммониевые соединения Аммоний-катионы Аммониты Аммония гексафторосиликат Аммония карбонат Аммония нитрат Аммония пероксодисульфат Аммония перхлорат Аммония сульфат Аммония тиоцианат Аммония фосфаты Аммония фторид Аммония хлорид Аммонолиз Аммофос Амортизаторные жидкости Аморфное состояние Амперометрическое титрование Амфотерность Амфотерные ионообменные смолы Анабазин Анаболические вещества Аналептические средства Аналитическая химия Анальгетические средства Анаприлин Ангелицин Ангидриды карбоновых кислот Ангидриды неорганических кислот Ангидрон Андрогены Анетол Анзамицины Анзерин Анид Анизидины Анизол Анизотропия Анилиды Анилин Анилино-формальдегидные смолы Анилиновая точка Анилиновый чёрный Анионная полимеризация Анионообменные смолы Анионы Анисовый альдегид Аннелирование Аннулены Анодная защита Анодное оксидирование Анодное растворение Анри реакции Анса-соединения Анти..., син.. Антиалкогольные средства Антиаллергические средства Антиаритмические средства Антибиотики Антигеморрагические средства Антигены Антигистаминные средства Антидепрессанты Антидетонаторы моторных топлив Антидиабетические средства Антидоты Антидоты для растений Антикоагулянты Антикоррозионные материалы Антимонаты Антимониды Антинакипины Антиозонанты Антиоксиданты Антипирены Антипирин Антиподы оптические Антирады Антисептические средства Антистатики Антитиреоидные средства Антиферментные средства Антиферромагнетики Антифиданты Антифризы Антифрикционные материалы Антифрикционные смазки Антихолинэстеразные средства Античастицы Антоцианы Антраниловая кислота Антрахинон Антрахинонкарбоновые кислоты Антрахиноновые красители Антрахинонсульфокислоты Антрацен Антрациклины Антрацит Антрон Анхимерное содействие Апатит Апикальное положение Апоморфин Аппретирующие средства Арахидоновая кислота Арбитражный анализ Арборициды Арбузова реакция Аргентометрия Аргинин Аргон Ареноний-катионы Арены Арил Арилирование Арилметановые красители Арилсульфатазы Арилсульфотрансфераза Арины Армированные пластики Арндта-айстерта реакция Ароксильные радикалы Ароматизация Ароматические соединения Ароматичность Аррениуса уравнение Арсеназо Арсенаты Арсениды Арсин Арсингалогениды Арсоний-катионы Асбопластики Асидол Асимметрический атом Асимметрический синтез Аскаридол Аспарагин Аспарагиназы Аспарагиновая кислота Аспартам Аспартат-карбамоилтрансфераза Аспартатаминотрансфераза Аспергилловая кислота Астат Асфальт Асфальтены Атмосфера Атмосферная коррозия Атмосферно-вакуумные установки Атмосферостойкость Атом Атомная единица массы Атомная масса Атомно-абсорбционный анализ Атомно-флуоресцентный анализ Атомные радиусы Атомные спектры Атропин Атропоизомерия Аттрактанты Ауверса-скиты правило Ауксины Афелий Аффинная хроматография Аценафтен Аценафтенхинон Аценафтилен Ацетали амидов карбоновых кислот Ацетали и кетали Ацетальдегид Ацетамид Ацетанилид Ацетатные волокна Ацетаты Ацетил-соа-синтетаза Ацетила пероксид Ацетилацетон Ацетилен Ацетилендикарбоновая кислота Ацетиленовые комплексы переходных металлов Ацетиленовые углеводороды Ацетилсалицйловая кислота Ацетилхлорид Ацетилхолин Ацетилхолинэстераза Ацетон Ацетонитрил Ацетонорастворимые красители Ацетонциангидрин Ацетоуксусный эфир Ацетофенон Ацефен Аци-нитросоединения Ацидиметрия Ацидокомплексы Ацидолиз Ациклические соединения Ацилирование Ацилоиновая конденсация Ацилоины Ацильное число Аэрозоли Аэросил